Social potential fields: A distributed behavioral control for autonomous robots

نویسندگان

  • John H. Reif
  • Hongyan Wang
چکیده

Social potential fields: A distributed behavioral control for autonomous robots* John H. Reif*, Hongyan Wang I Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA A Very Large Scale Robotic (VLSR) system may consist of from hundreds to perhaps tens of thousands or more autonomous robots. The costs of robots are going down, and the robots are getting more compact, more capable, and more flexible. Hence, in the near future, we expect to see many industrial and military applications of VLSR systems in tasks such as assembling, transporting, hazardous inspection, patrolling, guarding and attacking. In this paper, we propose a new approach for distributed autonomous control of VLSR systems. We define simple artificial force laws between pairs of robots or robot groups. The force laws are inverse-power force laws, incorporating both attraction and repulsion. The force laws can be distinct and to some degree they reflect the 'social relations' among robots. Therefore we call our method social potential fields. An individual robot's motion is controlled by the resultant artificial force imposed by other robots and other components of the system. The approach is distributed in that the force calculations and motion control can be done in an asynchronous and distributed manner. We also extend the social potential fields model to use spring laws as force laws. This paper presents the first and a preliminary study on applying potential fields to distributed autonomous multi-robot control. We describe the generic framework of our social potential fields method. We show with computer simulations that the method can yield interesting and useful behaviors among robots, and we give examples of possible industrial and military applications. We also identify theoretical problems for future studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0921-8890(99)00004-4

A Very Large Scale Robotic (VLSR) system may consist of from hundreds to perhaps tens of thousands or more autonomous robots. The costs of robots are going down, and the robots are getting more compact, more capable, and more flexible. Hence, in the near future, we expect to see many industrial and military applications of VLSR systems in tasks such as assembling, transporting, hazardous inspec...

متن کامل

Are Autonomous Mobile Robots Able to Take Over Construction? A Review

Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction qua...

متن کامل

A Robotic Swarm for Spill Finding and Perimeter Formation

This paper addresses issues surrounding deployment and tasking of a real-world collective of costeffective, small mobile robots. To escape the limitations of centralized control, this project distributes control using an innovative, multi-modal communication architecture including acoustical chirping, infrared, and radio frequency transmissions. This paper reports on the use of social potential...

متن کامل

A topology control algorithm for autonomous underwater robots in three-dimensional space using PSO

Recently, data collection from seabed by means of underwater wireless sensor networks (UWSN) has attracted considerable attention. Autonomous underwater vehicles (AUVs) are increasingly used as UWSNs in underwater missions. Events and environmental parameters in underwater regions have a stochastic nature. The target area must be covered by sensors to observe and report events. A ‘topology cont...

متن کامل

Distributed control of multi-robot systems using bifurcating potential fields

The distributed control of multi-robot systems has been shown to have advantages over conventional single robot systems. These include scalability, flexibility and robustness to failures. This paper considers pattern formation and reconfigurability in a multi-robot system using bifurcating potential fields. It is shown how various patterns can be achieved through a simple free parameter change....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1999